A1:

In nebenstehender Schaltung erzeugt jede der Batterien eine Spannung von 3V. Auf welchen Potentialen befinden sich die Punkte A, B und C? Zeichen Sie die Spannungspfeile ein!

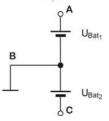


Bild 1

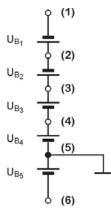
A2:

Mehrere Batterien sind wie in nebenstehender Schaltung miteinander verbunden. Die Spannungen der einzelnen Batterien betragen:

$$U_{B_1} = 12V$$

$$U_{B_2} = 9V$$

$$U_{B_3} = 6V$$


$$U_{B_4} = 3V$$

$$U_{B_5} = 4,5V$$

Zeichen Sie die Spannungspfeile ein!

Auf welchen Potentialen befinden sich die Meßpunkte (1) bis (6)?

Welchen Werte würden für die Spannungen U₆₁, U₁₄, U₄₂ zu messen sein ?

Bild 2

A3:

Bestimmen Sie Polaritäten und die Einzelspannungen der im nebenstehenden Stromkreis eingebauten Batterien B₁, B₂ und B₃ und zeichnen Sie die Spannungspfeile ein! (Symbole nachtragen)

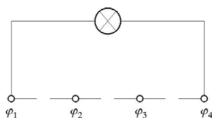
$$\phi_1 = -2V$$
, $\phi_2 = -8V$, $\phi_3 = 1.5V$, $\phi_4 = 0V$

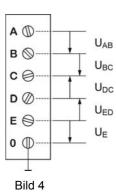
Zeichen Sie die Spannungspfeile ein!

An welcher Stelle ist der Stromkreis geerdet?

Wie groß sind die Potentialdifferenzen U_{13} , U_{14} , U_{42} , U_{21} ?

Zeichen Sie die technische Stromrichtung ein!




Bild 3

A4:

An einer Klemmleiste eines elektrischen Gerätes werden, wie im Bild 1 dargestellt, folgende Potentialdifferenzen gemessen:

$$U_{AB}$$
 = 18 V, U_{BC} = -12 V, U_{DC} = -7 V, U_{ED} = 19 V, U_{E} = 16 V

- a) Welches Potential hat jede Klemme bezogen auf Masse (0 V)?
- b) Welche Klemme hat das positivste und welche Klemme hat das negativste Potential?
- c) Welche höchste Potentialdifferenz ist messbar?

A5:

In einer elektrischen Schaltung werden an verschiedenen Meßpunkten (MP A ... MP D) folgende Spannungen gegen Masse als Bezugspunkt gemessen: $(U_X \triangleq U_{X0})$

MP A:
$$U_A = 12 V$$
,

MP B: $U_B = -7 V$,

MP C: $U_C = 3 V$,

MP D: $U_D = -6 \text{ V}$

Wie groß sind die Potentialdifferenzen

 U_{AB} , U_{AC} , U_{AD} , U_{BC} , U_{BD} , U_{CD} ?

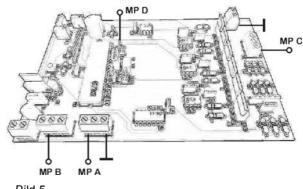


Bild 5

A6:

Das nebenstehende Bild zeigt die Steckerbelegung der 24-poligen ATX-Stromversorgung eines PC-Netzteiles. Die angegebenen Potentiale der Pins beziehen sich auf die angegebene Masse (φ = 0V).

Die Pins *PS_OK* und *Power OK* sind Signalleitungen und fließen nicht in die Aufgabe ein.

Welche Spannungen kann mit einem Digital-Voltmeter zwischen folgenden Pins (Px) gemessen werden ?

P21 und P10	P20 und P9	P23 und P4
P14 und P12	P24 und P20	P6 und P14
P5 und P2	P22 und P20	P1 und P2
P11 und P9	P10 und P12	P2 und P4

Bild 6

A7:

In dem Stromkreis (Bild 7) sind die Potentiale an den Meßpunkten A bis D zu bestimmen wenn der Bezugspunkt (Masse) mit dem Meßpunkt D verbunden wird !

$$U_{01} = 9V$$
, $U_{02} = 6V$,
 $R_1 = 30k\Omega$, $R_2 = 15k\Omega$,

Welchen Wert besitzt die Spannung U_{CA} ?

Welchen Wert und Richtung hat der Strom I der Schaltung?

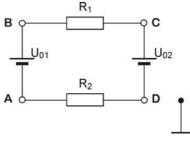


Bild 7

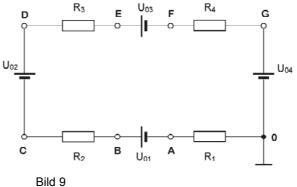
A8:

In dem Stromkreis (Bild 7) wird der Meßpunkt A mit Masse verbunden.

Mit einem DVM (Digital-Voltmeter) wird die Spannung U_{AC} von -7,08 V gemessen. Der Strom der Schaltung wird mit 6 mA bestimmt und besitzt die Richtung CBA.

Es sind die Widerstände R_1 = 680 Ω , R_2 = 820 Ω verbaut.

Berechnen Sie die fehlenden Potentiale sowie die Spannungen der Spannungsquellen!


A9:

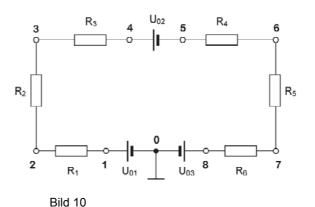
In dem Stromkreis (Bild 9) sind die Potentiale an den Meßpunkten A bis G zu bestimmen.

Bekannt sind:

$$U_{01} = 25 \text{ V}, \ U_{02} = 18 \text{ V}, \ U_{03} = 15 \text{ V}, \ U_{04} = 12 \text{ V}$$

 $R_1 = 22 \ \Omega, \ R_2 = 10 \ \Omega, \ R_3 = 33 \ \Omega, \ R_4 = 15 \ \Omega$

Welchen Wert besitzt der Strom I und in welche Richtung fließt dieser?


A10:

Wie groß muss in einem Stromkreis (Bild 10) die Erzeugerspannung U_{02} gewählt werden, wenn am Meßpunkt 6 ein Potential U_{60} = 14,1 V vorhanden sein soll?

Bekannt sind:

$$U_{01} = 12 \text{ V}, \ U_{03} = 18 \text{ V}$$

 $R_1 = 3 \Omega, \ R_2 = 8 \Omega, \ R_3 = 10 \Omega,$
 $R_4 = 6 \Omega, \ R_5 = 4 \Omega, \ R_6 = 9 \Omega$

Welchen Wert und Richtung hat der Strom I der Schaltung?

