Berechnung von Induktivitäten (Spulen)

a) Induktivität eisenfreier Spulen

Aufgabe 1:

$$L = \frac{N^2 \cdot \mu_0 \mu_r \cdot A}{l} = 0,02 \text{ mH} \qquad A = \frac{\pi}{4} \cdot \left(\frac{d_1 - d_2}{2}\right)^2 = 0,785 \text{ cm}^2 = 78,5 \text{ } 10^{-6} \text{ m}^2, \quad l = \frac{\pi(d_1 + d_2)}{2} = 22 \text{ cm} = 0,22 \text{ m}$$

$$\mu_r = 1$$

Aufgabe 2:

$$L = \frac{N^2 \cdot \mu_0 \mu_r \cdot A}{l} = 0,512 \text{ mH} \qquad A = \frac{\pi}{4} \cdot \left(\frac{d_l - d_2}{2}\right)^2 = 122,7 \text{ cm}^2 = 122,7 \text{ 10}^{-4} \text{ m}^2, \ l = \frac{\pi(d_l + d_2)}{2} = 0,165 \text{ m}$$

$$\mu_r = 35$$

Aufgabe 3:

N = =
$$\sqrt{\frac{L \cdot l}{\mu_0 \mu_r A}}$$
 =183 Windungen mit A = 0,503 cm² = 50,3 10⁻⁶ m², l = 17,6 cm = 0,176 m, μ_r = 1

Aufgabe 4:

µr steht im Nenner, deshalb 1/5 von 183 Windungen ≈ 37 Windungen

Aufgabe 5

 $\mu_r = 14$

Aufgabe 6:

Verhältnisgleichung:

$$\frac{N^2 \cdot \mu_0 \mu_r \cdot \pi d^2}{l \cdot 4} = \frac{0.8^2 \cdot N^2 \cdot \mu_0 \mu_r \cdot \pi \cdot d_{20}^2}{0.8 \cdot l \cdot 4} \implies d_{20} = \sqrt{\frac{l}{0.8}} = d * 1,12 \implies d.h. \text{ Vergrößerung um 12\%}$$

Aufgabe 7:

	a)	b)	c)
$N = l / d_{Draht}$	900	120	72
Windungsdurchmesser in mm	30,2	31,5	32,5
A in mm ²	716,3	779,3	829,6
L	4,05 mH	78 µH	30 µH

Aufgabe 8:

I.	15.5 mH	18 2 mH	42 mH	54 mH
h in cm	2	1,5	1,8	1,5
<i>l</i> in cm	3	1	0,5	5
R in cm	3	5	6,4	2,5
N	600	350	433	1450
	a)	b)	c)	d)

Aufgabe 9:

	a)	b)	c)	d)
Induktionen	25 mH	12 mH	35 mH	373 mH
N_{neu^2} : $N_{alt^2} = L_{neu}$: L_{alt}	762 Windn	284 Windn	395 Windn	3811 Windn

Aufgabe 10:

 $L_{200} = 62.9 \,\mu\text{H}$, $L_{150} = 62.9 \,\mu\text{H}$, $L_{50} = 15.8 \,\mu\text{H}$ bei Verkleinerung der Spulenlänge

Aufaahe 11

	a)	b)	c)
N	2250	1000	250
L	72,5 mH	14,3 mH	895 µH

Aufgabe 12:

Windungsdurchmesser = 3,15 mm A = 7,8 cm² Länge einer Windung = 9,9 cm

N = 505; l = 75.8 cm; $L = 330 \mu H$

Aufgabe 13:

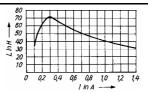
Mit Windungslänge $l_{\rm W}$ = π (d+D) wird die Spulenlänge l = ND = $\frac{l_{Draht}}{l_{\rm W}} \cdot D$ = $\frac{l_{Draht}}{\pi \left(d+D\right)} \cdot D$

und andererseits l = 8 d

Gleichsetzen ergibt $l_{Draht}D = 8\pi (d+D)$ und somit d = 5,4 cm

l = 43.2 cm; $A = 7.8 \text{ cm}^2$; N = 287; $L = 570 \mu\text{H}$

b) Induktivität bei Anwesenheit von Eisen

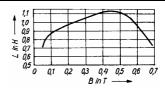

Aufgabe 1:

<u>I:</u>	a) 0,1 A	b) 0,2A	c) 0,4A	d) 0,6A	e) 0,8A	f) 1,0 A	g) 1,2 A	h) 1,4 A	
H in A/m	46	93	186	279	372	464	557	650	
B in T	0,1	0,35	0,76	0,97	1,08	1,17	1,23	1,27	
μr	1730	2990	3250	2770	2310	2010	1760	1550	
L in mH	35,3	61,1	66,4	56,6	47,2	41,0	35,9	31,7	

 $H = \frac{\Theta}{l} = \frac{IN}{l}$; B aus Magnetisierungskurve, μ r, L mit obiger Formel oder L = (N B A) / I

Aufgabe 2:

Verlauf der Induktivität in Abhängigkeit von der Stromstärke:


Aufgabe 3:

В	a) 0,05 T	b) 0,1 T	c) 0,2 T	d) 0,4 T	e) 0,5 T	f) 0,6 T	g) 0,7 T	h) 0,8 T
H in A/m	250	400	720	1250	1570	2200	3500	5300
μr	159	199	221	255	253	217	159	120
L in mH	0,7	0,876	0,973	1,13	1,114	0,956	0,7	0,528

H aus Magnetisierungskurve

Aufgabe 4:

Induktivität in Abhängigkeit von der Induktion:

Aufgabe 5:

$$L = \frac{N^2 \cdot \Phi}{\Theta} = 13,6 \text{ mH}$$

Aufgabe 6:

$$L = \frac{N \cdot \Phi}{I} = 569 \text{ mH}$$

Aufgabe 7:

$$L = \frac{N \cdot B \cdot A}{I} = 42 \text{ mH}$$

Aufgabe 8:

$$L = \frac{\Theta \cdot \Phi \cdot R^2}{U^2} = 751 \text{ H}$$

Aufgabe 9:

$$L = N \cdot \Phi \cdot \sqrt{\frac{P}{R}} = 51 \text{ H}$$

Aufgabe 10:

 Φ = 5,27. 10-4 Wb

Aufgabe 11:

$$N = \sqrt{\frac{L \cdot \Phi}{B \cdot A}} = 1469$$
, I = 353 mA aus Magnetisierungskurve: H = 1150 A/m, Θ = 517,5 A

Aufgabe 12:

N = 1580; I = 71,2 mA aus Magnetisierungskurve: H = 250 A/m, Θ = 112,5 A

Aufgabe 13:

a)
$$\Theta = H^*l = 70 \text{ A}$$
, $A = \frac{\Theta \cdot L}{B \cdot N^2} = 6.7 \text{ mm}^2$; $I = 5 \text{ mA}$ aus Magnetisierungskurve: $H = 200 \text{ A/m}$

b) $\Theta = H^*l = 1855 \text{ A}$, $A = 1,775 \text{ cm}^2$; I = 132,5 mA aus Magnetisierungskurve: H = 5300 A/m

Aufgabe 14:

$$A = \frac{A_{Draht} \cdot N \cdot 1, 2}{k_{Cu}} = 1980 \text{ mm}^2 \text{ ; aus Magnet.kurve: } H = 5300 \text{ A/m} \text{ ;} \qquad \text{Seitenlänge } a^2 = A_W \Rightarrow a = 4,45 \text{ cm}$$

$$A_{Eisen} = x^2$$
; Eisenweg $l_m = 4(a+x)$; $\Theta = H^*l = 4(a+x)$; $A_{Eisen} = \frac{\Theta \cdot L}{B \cdot N^2} = x^2 \rightarrow x$

x = 1,17 cm (Seitenlänge des quadratischem Eisenquerschnitts) äußere Seitenlänge des Rahmens: = a + 2x = 6,79 cm

Aufgabe 15:

L = 426,7 mH bzw. L = 320 mH