Aufgaben zu Kapazitäten / Kondensatoren

Berechnung der Kapazität von Kabeln und Leitungen

Formeln:

Konzentrisches Kabel:

$C = \frac{2\pi \epsilon_0 \epsilon_r l}{l}$	
ln ra	
r _i	

Einzelleitung:

$$C = \frac{2\pi\varepsilon_0\varepsilon_r l}{ln\frac{2h}{r}}$$

Doppelleitung:

$$C = \frac{\pi \varepsilon_0 \varepsilon_r l}{ln \frac{d}{r}}$$

Größe	Zeichen	Einheit
Spannung	U	V
Kapazität	С	F=As/V
Dielektrizitätszahl	ϵ_{r}	
Radius Innenleiter	\mathbf{r}_{i}	m
Radius Außenleiter	ra	m
mittlerer Röhrchenradius	r	m
Länge	l	m
Radius des Einzeldrahtes	r	m
Leiterabstand	d	m
Höhe über Erdboden	h	
elektrische Feldkonstante	ϵ_0	As/Vm
$\varepsilon_0 = 8,854 \cdot 10^{-12} \text{ As/Vm} = 8,854 \cdot 10^{-12}$		

A27: (844, 845)

Welche Kapazität hat ein abgeschirmtes Antennenkabel von 18 m Länge mit den Durchmessern $d_a = 8$ mm und $d_i = 0.8$ mm? (ϵ_r 2,4) Wie lang darf dieses Kabel höchstens sein, wenn die Kapazität 850 pF nicht überschreiten soll?

A28: (846)

Welchen Durchmesser muss der Außenleiter eines konzentrischen Kabels von 12 m Länge haben, wenn bei einem Durchmesser des Innenleiters von 2,4 mm die Kapazität 600 pF betragen soll ($\varepsilon_r = 2,4$)?

A29: (847)

Ein konzentrisches Kabel soll je Kilometer eine Kapazität von 50 nF aufweisen. Welchen Durchmesser muss der Außenleiter bei folgenden Durchmessern des Innenleiters haben ($\epsilon_r = 2,4$):

a) 1 mm, b) 2 mm, c) 3 mm, d) 4mm?

A30: (848)

In welchem Verhältnis müssen die Durchmesser von Außen- und Innenleiter eines Kabels von $0.3~\mu\text{F}$ je Kilometer zueinander stehen ($\epsilon_r = 2.1$)?

A31: (849)

Eine durchschnittlich 7,5 m über dem Erdboden verlaufende Telegrafenleitung von 85 km Länge hat einen Durchmesser von 3 mm. Welche Kapazität hat sie?

A32: (850)

Um die Bruchstelle einer in 6,5 m Höhe verlaufenden Telegrafenleitung (Durchmesser 2,5 mm) zu finden, wurde die Kapazität gemessen und mit 0,043 µF bestimmt. In welcher Entfernung befindet sich die Unterbrechung?

A33: (851)

Um wie viel Prozent verringert sich die Kapazität einer in 3,5 m Höhe laufenden 2,5 mm dicken Einzelleitung, wenn sie 1m höher verlegt wird?

A34: (852)

Welche Kapazität hat eine Doppelleitung von 75 m einfacher Länge, deren beide Drähte von 3,5 mm Dicke im Abstand von 15 cm verlaufen?

A35: (853)

Zwei parallele Drähte von 1,8 mm Durchmesser werden durch solche von 2,5 mm Durchmesser ersetzt. Um das Wievielfache muss ihr Abstand vergrößert werden, wenn sich die Kapazität nicht verändern soll?

A36: (854)

Der 20 cm betragende Abstand der beiden Drähte (Durchmesser 2 mm) einer Doppelleitung wird verdoppelt. Das Wievielfache kann bei gleicher Kapazität die Länge betragen?

A37: (855)

Wie muss der Abstand zweier paralleler Drähte verändert werden, wenn bei a) doppelter und b) dreifacher Leitungslänge die Kapazität unverändert bleiben soll?

A38: (856)

Mit Berücksichtigung der Erde ist die Kapazität einer Doppelleitung:
Unter welcher Voraussetzung kann statt dessen die eingangs angeführte Gleichung verwendet werden?

$$C = \frac{2\pi\epsilon_0 l}{ln \frac{(2 h/r)^2}{1 + (2 h/d)^2}}$$