Aufgaben zu Kapazitäten / Kondensatoren

Berechnung der Kapazität von Kondensatoren

Formeln:

Q = UC

Zweiplattenkondensator:

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

Kondensator mit n-1 Metallfolien und n Isolierplatten:

$$C = (n-1) \frac{\varepsilon_0 \varepsilon_r A}{d}$$

Wickelkondensator:

$$c = \frac{2 \cdot \epsilon_0 \epsilon_r A}{d}$$

Röhrchenkondensator:

$$C = \frac{2 \cdot \varepsilon_0 \varepsilon_r \pi l r}{d}$$

Freie Kugel in Luft:

$$C = 4\pi\epsilon_0 r$$

Größe	Zeichen	Einheit
Spannung	U	V
Verschiebungsladung (Ladungsmenge)	Q	C=As
Kapazität	С	F=As/V
Dielektrizitätszahl	ϵ_{r}	
Oberfläche	Α	m^2
Dicke Dielektrikum	d	m
mittlerer Röhrchenradius	r	m
Länge	l	m
Kugelradius	r	m
elektrische Feldkonstante	ε ₀	As/Vm
$\varepsilon_0 = 8,854 \cdot 10^{-12} \text{ As/Vm} = 8,854 \cdot 10^{-12} \text{ F/m}$		

A18: (828)

Ein Blockkondensator besteht aus 18 Aluminiumfolien mit einer wirksamen Oberfläche von je 14 mm X 28 mm und Glimmerscheiben von je 0,06 mm Dicke (ϵ_r =7,0). Wie groß ist seine Kapazität?

Nach einer Reparatur hatte dieser Kondensator eine Kapazität von nur noch 4850 pF. Wie viel Metallfolien waren entfernt worden?

A19: (830)

Ein Wickelkondensator enthält 2 paraffinierte Papierstreifen (ε_r = 2,16) von 0,025 mm Dicke und 2 Metallfolien von je 12 m Länge und 5 cm Breite. Wie groß ist seine Kapazität?

A20: (831)

Wie viel Meter Wickelband sind erforderlich, um eine Kapazität von 2 F zu erzielen? Das Band besteht aus zwei paraffinierten Papierstreifen (ϵ_r = 2,16) von 0,032 mm Dicke und 2 Aluminiumfolien von 38 mm Breite.

A21: (834)

Die Belegungen eines Röhrchenkondensators sind 15 mm lang, der Außendurchmesser beträgt 5 mm, die Dicke des Dielektrikums 0,16 mm (ϵ_r = 55). Wie groß ist die Kapazität?

A22: (835

Wie dick muss das Dielektrikum (ϵ_r =82) eines Röhrchenkondensators von 20 mm wirksamer Belagslänge sein, wenn bei einem Außendurchmesser von 6 mm die Kapazität 2 nF betragen soll?

A23: (838, 839)

Welche Kapazität hat eine Kugel von 1 cm Radius?

Welche Kapazität hat die Oberfläche der Erdkugel? (Erdradius r = 6378 km)

A24: (840)

Auf den wievielfachen Wert steigt die Kapazität eines Kondensators mit n Platten, wenn alle linearen Abmessungen verdoppelt werden?

A25: (841)

Auf den wievielfachen Wert steigt die Kapazität eines Röhrchenkondensators, wenn die linearen Abmessungen verdoppelt werden, die Schichtdicke jedoch dieselbe bleibt?

A26: (843)

Welche Oberfläche müsste ein Zweiplattenkondensator haben, wenn er bei einer Spannung von 220 V und einem Plattenabstand von 1 mm die Ladung 1 C tragen soll?