
A1:

In der Schaltung im nebenstehenden Bild sind gegeben:

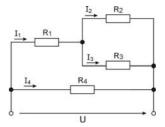
 $U_{R2} = 20 \text{ V}, R_1 = 150 \Omega, R_3 = 220 \Omega, R_4 = 470 \Omega, I_1 = 200 \text{ mA}$

- a) Berechnen Sie den Gesamtwiderstand der Schaltung sowie die fehlenden Spannungen und Ströme!
- b) Um wie viel Prozent verändern sich die Ströme bei einer Umgebungstemperatur der Schaltung von 100°C, wobei die Gesamtspannung der Schaltung konstant bleibt (Leitungswiderstände bleiben unberücksichtigt, $\alpha_{20} = 0.4 \cdot 10^{-3} \text{ K}^{-1}$)?

A2:

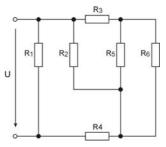
Die Widerstände R $_1$ = 5,6 k Ω , R $_2$ = 4,7 k Ω sind parallel geschaltet und liegen in Reihe zu den parallel geschalteten Widerständen R $_3$ = 1,2 k Ω , R $_4$ = 1,8 k Ω . Die Spannung an R $_1$ beträgt 3,7 V.

Zeichnen Sie die Schaltung und berechnen Sie den Ersatzwiderstand, die Spannung an R₄, die Teilströme, den Gesamtstrom und die Gesamtspannung!


Zeichnen Sie die Schaltung mal selbst!

A3:

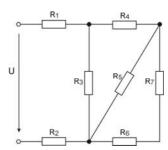
In der Schaltung im nebenstehenden Bild sind gegeben:


 $U = 24 \text{ V}, \ R_1 = 560 \ \Omega, \ R_3 = 180 \ \Omega, \ R_4 = 470 \ \Omega, \ I_1 = 34.8 \ \text{mA}, \ I_{\text{des}} = 50 \ \text{mA}$

Berechnen Sie den Gesamtwiderstand der Schaltung sowie die fehlenden Widerstände, Spannungen und Ströme!

A4:

Sechs Widerstände von je 2 k Ω , sind wie im nebenstehenden Bild geschaltet. Berechnen Sie den Gesamtwiderstand und alle Ströme und Spannungen wenn der Widerstand R $_5$ von einem Strom I $_5$ = 1 mA durchflossen wird!

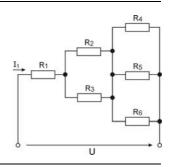


A5:

Berechnen Sie zu der nebenstehenden Schaltung alle Spannungen und Ströme! Bekannt sind:

U = 48 V

$$\rm R_1=1~k\Omega,~R_2=2~k\Omega,~R_3=4500~\Omega,~R_4=2.5~k\Omega,~R_5=3~k\Omega,R_6=4~k\Omega,~R_7=2~k\Omega$$

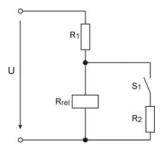

A6:

Berechnen Sie den in nebenstehender Schaltung den Strom durch R_4 , die Spannung an R_5 und die Gesamtspannung!

Bekannt sind:

 $I_1 = 1,5 A$

$$R_1 = 60~\Omega,~R_2 = 200~\Omega,~R_3 = 50~\Omega,~R_4 = 80~\Omega,~R_5 = 100~\Omega, R_6 = 120~\Omega$$


A7:

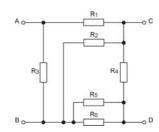
Durch ein Gleichstromrelais (Bild rechts) fließt bei geöffnetem Schalter S₁ ein Strom von 8 mA. Schließt man jedoch den Schalter S₁, so sinkt die Spannung an der Relaisspule um 8V.

Berechnen Sie die Widerstände R_1 und R_2 und den Strom durch die Relaisspule bei geschlossenem bzw. bei geöffnetem Schalter S₁!

Bekannt sind:

 $U = 48 \text{ V}, R_{rel} = 3 \text{ k}\Omega$

A8:

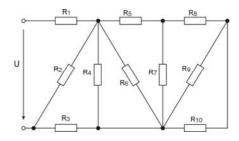

Die Widerstände nebenstehender Schaltung haben folgende Aufdrucke:

 $R_1:\ 180R$, $R_2:\ rot\ violett\ braun$, $R_3:\ schwarz\ rot\ braun$,

 R_4 : 150R, R_5 : gelb violett braun, R_6 : rot rot braun

Berechnen Sie den Ersatzwiderstand, die Teilspannungen und Teilströme für den Anschluss der Schaltung an 9 V in den Punkten

a) A-B, b) A-C, c) A-D, d) B-C, e) B-D, f) C-D



A9:

Ein Netzwerk mit 10 Widerständen (nebenstehende Schaltung) liegt an 220 V Gleichspannung. Berechnen Sie den Ersatzwiderstand, die Teilspannung an R₄ und die Stromstärke in R₇!

$$R_5 = 470 \Omega$$
, $R_6 = 810 \Omega$, $R_7 = 680 \Omega$, $R_8 = 150 \Omega$

 $R_9 = 120 \Omega$, $R_{10} = 390 \Omega$.

