
# Aufgaben zu Ersatzspannungsquelle / Spannungsteiler (unbel./belastet)

### A1:

Gegeben ist die Schaltung in Bild 1 mit:  $R_1=3~\Omega$ ,  $R_2=6~\Omega$ ,  $U_{q1}=12~V$ ,  $U_{q2}=24~V$ ,  $U_{q3}=72~V~$  ( $R_a$  variabel).

Ermitteln Sie die Kennwerte U<sub>qers</sub> und R<sub>iers</sub> der Ersatzspannungsquelle!



# A2:

Eine 120 V – Lampe eines Projektors mit einer Stromstärke von I=3,5 A soll an die Spannung von 230 V angeschlossen werden. Hierzu ist ein Vorschaltwiderstand aus Konstantan-Draht  $(\chi_{20} = 2 \text{ m/}(\Omega \text{ mm}^2) \text{ zu wickeln.})$ 

Wie groß ist der Vorschaltwiderstand und wie viel Draht von 1mm Durchmesser ist hierzu erforderlich?

#### **A3**:

Eine 9 V – Batterie gibt im Leerlauf die Spannung von 9,3 V ab. Bei Kurzschluss entsteht ein Strom von  $I_K=2,9$  A.

Wie groß ist der Innenwiderstand und auf welche Laststromstärke ist zu begrenzen, wenn die Klemmenspannung bei Belastung um höchstens 0,8 V zurückgehen darf? (rechnerisch / grafisch)

#### A4:

Ein Widerstand ist an 24 V angeschlossen. Sein verstellbarer Abgriff teilt den Gesamtwiderstand von 10 k $\Omega$  in die Teilwiderstände R<sub>1</sub> und R<sub>2</sub>. Berechnen Sie die Ausgangsspannungen U<sub>21</sub> bis U<sub>25</sub> für die Abgriffstellungen R<sub>21</sub> = 0  $\Omega$ , R<sub>22</sub> = 2,5 k $\Omega$ , R<sub>23</sub> = 5 k $\Omega$ , R<sub>24</sub> = 7,5 k $\Omega$ , R<sub>25</sub> = 10 k $\Omega$  und stellen Sie die Abhängigkeit der Ausgangsspannung von der Abgriffstellung grafisch dar !

### A5:

Die Klemmenspannung einer Spannungsquelle  $U_{\text{\tiny L}}$  beträgt bei Belastung mit

 $I_1 = 40 \text{ mA} \rightarrow U_L = 6V \text{ und bei}$ 

 $I_2 = 60 \text{ mA} \rightarrow U_L = 4 \text{ V!}$ 

Berechnen Sie die Leerlaufspannung  $U_q$ , den Kurzschluss-Strom  $I_K$ , den Innenwiderstand  $R_i$  sowie die Belastungswiderstände  $R_1$  und  $R_2$  und stellen Sie die Belastungskennlinie des aktiven Zweipols sowie die Kennlinien der Belastungswiderstände  $R_1$  und  $R_2$  grafisch dar!

## A6:

Ein Widerstand von 16 k $\Omega$  mit verstellbarem Abgriff ist an 48 V angeschlossen und mit 4 k $\Omega$  belastet. Berechnen Sie die Ausgangsspannung für die Abgriffstellung R $_2$  = 0  $\Omega$ , R $_2$  = 4 k $\Omega$ , R $_2$  = 8 k $\Omega$ , R $_2$  = 12 k $\Omega$ , R $_2$  = 16 k $\Omega$  und stellen Sie die Abhängigkeit der Ausgangsspannung von der Abgriffstellung grafisch dar !

Ergänzen Sie die Grafik durch die Kennlinie für den unbelasteten Ausgang! Wo ist die Ausgangsspannung am meisten abhängig?

#### ۸7-

Bei einem Spannungsteiler für  $U_q=11,65$  V,  $U_L=4,4$  V,  $R_L=220$   $\Omega$  sollen sich die Ströme  $I_q$  zu  $I_L$  wie 10 zu 1 verhalten.

Berechnen Sie R<sub>1</sub>, R<sub>2</sub> und die Lastspannungsänderung wenn R<sub>L</sub> auf 140 Ω absinkt!

Um die Versorgungsspannung zu entlasten und die Wärmeentwicklung zu verringern, wird der Spannungsteiler auf das Verhältnis  $I_q$  /  $I_L$  = 2 geändert.

Berechnen Sie  $R_1$ ,  $R_2$  und die Lastspannungsänderung wenn  $R_L$  auf 140  $\Omega$  absinkt!

#### **A8:**

Mit einem Spannungsmesser mit einem Innenwiderstand von 1 M $\Omega$  wird an einer Spannungsteiler-Schaltung R<sub>1</sub> = 800 k $\Omega$  und R<sub>2</sub> = 200 k $\Omega$  die Spannung U<sub>2</sub> = 12 V gemessen.

Wie groß ist die Spannung  $U_{20}$  ohne angeschlossenen Spannungsmesser und wie groß ist der prozentuale Linearitätsfehler?